On strongly norm attaining Lipschitz maps
نویسندگان
چکیده
منابع مشابه
On strongly Jordan zero-product preserving maps
In this paper, we give a characterization of strongly Jordan zero-product preserving maps on normed algebras as a generalization of Jordan zero-product preserving maps. In this direction, we give some illustrative examples to show that the notions of strongly zero-product preserving maps and strongly Jordan zero-product preserving maps are completely different. Also, we prove that the direct p...
متن کاملNorm Attaining Multilinear Forms on L1(μ)
Given an arbitrary measure μ, this study shows that the set of norm attaining multilinear forms is not dense in the space of all continuous multilinear forms on L1 μ . However, we have the density if and only if μ is purely atomic. Furthermore, the study presents an example of a Banach space X in which the set of norm attaining operators from X into X∗ is dense in the space of all bounded linea...
متن کاملLipschitz Maps on Trees
We introduce and study a metric notion for trees and relate it to a conjecture of Shelah [10] about the existence of a finite basis for a class of linear orderings.
متن کاملlipschitz groups and lipschitz maps
this contribution mainly focuses on some aspects of lipschitz groups, i.e., metrizable groups with lipschitz multiplication and inversion map. in the main result it is proved that metric groups, with a translation-invariant metric, may be characterized as particular group objects in the category of metric spaces and lipschitz maps. moreover, up to an adjustment of the metric, a...
متن کاملStrong Peak Points and Strongly Norm Attaining Points with Applications to Denseness and Polynomial Numerical Indices
Using the variational method, it is shown that the set of all strong peak functions in a closed algebra A of Cb(K) is dense if and only if the set of all strong peak points is a norming subset of A. As a corollary we can induce the denseness of strong peak functions on other certain spaces. In case that a set of uniformly strongly exposed points of a Banach space X is a norming subset of P(nX),...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2019
ISSN: 0022-1236
DOI: 10.1016/j.jfa.2018.12.006